
100 PRISONERS AND A LIGHT BULB
(work in progress)

William Wu
wwu@ocf.berkeley.edu

http://www.ocf.berkeley.edu/˜wwu

2002 December 5

1 The Puzzle

There are 100 prisoners in solitary cells. There’s a central living room with one light bulb; this
bulb is initially off. No prisoner can see the light bulb from his or her own cell. Everyday, the
warden picks a prisoner equally at random, and that prisoner visits the living room. While there,
the prisoner can toggle the bulb if he or she wishes. Also, the prisoner has the option of asserting
that all 100 prisoners have been to the living room by now. If this assertion is false, all 100
prisoners are shot. However, if it is indeed true, all prisoners are set free and inducted into
MENSA, since the world could always use more smart people. Thus, the assertion should only
be made if the prisoner is 100% certain of its validity.

The prisoners are allowed to get together one night in the courtyard, to discuss a plan. What
plan should they agree on, so that eventually, someone will make a correct assertion?1

Initially, this puzzle may appear to have no solution. How can 100 people count to 100
using only one bit of communication? Surprisingly, there are algorithms which can solve
this problem within the span of a prisoner’s lifetime. This work in progress will present and
analyze several such algorithms.

Ultimately, the author would like to develop a theory for constructing optimal algorithmic
solutions, parameterized by the number of prisoners, number of light bulbs, and a risk
tolerance on the validity of an assertion. So far he has only studied in depth the case of one
light bulb with zero risk (success requires 100% probability of making a valid assertion). He
suspects there exist applications of such a theory to distributed networks.

1Puzzle Origin: The author has been unable to track the exact origin of this puzzle, which
he heard from a friend during the fall of 2001. According to IBM Research, the puzzle has
been making the rounds of Hungarian mathematicians’ parties (”Ponder This”, July 2002 Challenge,
http://domino.watson.ibm.com/Comm/wwwr ponder.nsf/challenges/July2002.html).

1



2 One Counter Method

2.1 Standard Solution

Many struggle with this puzzle because they believe every prisoner must act the same way. If
we consider assigning different roles to prisoners, a straight-forward solution presents itself.
We can assign one prisoner to lead the group. Denote him as The Counter.

• Job of The Counter: Maintains an integer inside his head, initialized to 1. If he
enters the living room and sees an on light bulb, he increments the integer and turns off
the bulb. Otherwise, do nothing. When the integer reaches 100, assert that everyone
has been in the living room.

• Job of Everyone Else: If the bulb is off and he has never turned the bulb on before,
turn the bulb on. Otherwise, do nothing.

It can be shown that the probability of success for this algorithm converges to 1. (Perhaps
the author will prove this after finals.)

The expected number of days till this algorithm succeeds is 10417.74 days, or 28.54 years.
Contrast this to the expected number of days till all prisoners are chosen, which is roughly
100 log(100) = 460.52 days = 1.262 years using a coupon collector analysis. (Note for future
work: include variance as well.)

Proof: Let the random variable X return the running time of the algorithm in days. X
can be written as the sum of random variables {Xi | i ∈ {1, 2, ..., 99}}, where Xi is the
number of days after the (i− 1)th unrecorded prisoner was tallied by The Counter until the
ith unrecorded prisoner is tallied. Note that there is no X100, because The Counter already
counts himself as having been in the living room. By linearity of expectation,

E[X] =
99∑

i=1

E[Xi]

Each Xi can be expressed as the sum of two geometric random variables: Xi = Yi + Zi,
where Yi is the number of days after the (i − 1)th unrecorded prisoner was tallied until the
ith unrecorded prisoner is chosen by the warden, and Zi is the number of days until The
Counter realizes that the ith unrecorded prisoner was chosen. Note that Yi ∼ geom(100−i

100
)

and Zi ∼ geom( 1
100

). Since the expectation of a geometric random variable is the reciprocal
of its probability, we have:

2



E[X] =
100

99
+ 100

︸ ︷︷ ︸
E[X1]

+
100

98
+ 100

︸ ︷︷ ︸
E[X2]

+ . . . +
100

1
+ 100

︸ ︷︷ ︸
E[X99]

= (100 ·
99∑

i=1

1

i
) + (99 · 100)

≈ 10417.74 days = 28.542 years

In general, for n prisoners,

E[X] = (n ·
n−1∑

i=1

1

i
) + (n− 1)n

= n(Hn−1 + n− 1) = O(n2)

where Hn−1 is the (n-1)th harmonic number. This analysis could have been shortened by
recognizing that the scenario is analogous to the coupon collector problem, except for an
additional factor of n(n-1) contributed by The Counter.

2.2 Improvement: Dynamic Counter Assignment

We can improve this algorithm slightly by dynamically assigning the role of Counter. Let
The Counter be the first prisoner to enter the living room twice. Then, if The Counter enters
the room on day k, he knows that k-1 people have been in the room (including himself).
Thus The Counter can initialize his integer to k-1 rather than 1, and save (k-1) - 1 = k-2
iterations. The algorithm will now have to be split into two stages: an initial 100 day stage
during which the prisoners determine who The Counter is, and the following stage, which
runs just like the standard one counter solution.

1. Stage 1: Days 1-100

• Days 1-99: The light is initially off. The first prisoner to enter the room twice
assigns himself to be The Counter, and turns on the light. He also initializes an
integer into his head to the day of reentry minus 1. Aside from these actions on
The Counter’s behalf, nothing else takes place.

• Day 100: Note that the first 99 days partitioned the prisoners into four groups:

(a) Prisoners who entered the room and found an off bulb

(b) Prisoners who entered the room and found an on bulb

(c) Prisoners who never entered the room

3



(d) The Counter who entered the room at least twice, and turned on the light.

The prisoner chosen on day 100 has a special job:

– If bulb is off (probability 100−100): Assert that all have been in living room.

– If bulb is on: If he belongs to groups (a) or (d), turn off bulb.

2. Stage 2: Days 101- . . .

The second stage runs identically to the aforementioned algorithm without dynamic
Counter assignment.

• Job of The Counter: Maintains an integer inside his head, initialized to 1. If
he enters the living room and sees an on light bulb, he increments the integer and
turns off the bulb. Otherwise, do nothing. When the integer reaches 100, assert
that everyone has been in the living room.

• Job of Everyone Else: If the bulb is off and he has never turned the bulb on
before, turn the bulb on. Otherwise, do nothing.

The expected running time of this algorithm is 24.42 years. (Note for future work: include
variance as well.)

Proof: To determine the number of iterations saved, we compute the expectation of a
random variable K, which returns the number of days until the first time a prisoner re-enters
the living room. (In a balls and bins context, E[K] is the expected time till the first collision.)

E[K] =
101∑

i=k

kP (K = k)

Note that the summation ends at k = 101 because P(K = k) = 0 for k > 101. By the
pigeonhole principle, the day of first reentry can be 101 at the latest. Computing the
probability mass function of K:

P (K = k) = P (collision on day k ∩ no collision on day k-1 ∩ . . . ∩ no collision on day 1)

= P (no col. day 1) · P (no col. day 2 | no col. day 1)

·... · P (col. day k | no col. days 1 thru k-1)

= 1 · 99

100
· 98

100
· . . . · 100− k + 2

100
· k − 1

100

=
100!(k − 1)

100k · (100− k + 1)!
for k ∈ {1, 2, . . . , 101}

Thus,

4



E[K] =
101∑

k=1

k
100!(k − 1)

100k · (100− k + 1)!
= 13.21 ≈ 13 days

and the total runtime is

E[X] = (100 ·
99∑

i=(13−1)

1

i
) + (99− (13− 1)) · 100

≈ 8915.75 days = 24.42 years.

On average, over four years are saved with this improvement. In general,

E[X] = (n ·
n−1∑

i=bE[K]c−1

1

i
) + ((n− 1)− (bE[K]c − 1))n

= (n ·
n−1∑

i=bE[K]c−1

1

i
) + (n− bE[K]c)n

= n(Hn−1 −HbE[K]c−2) + (n− bE[K]c)n
= n(Hn−1 −HbE[K]c−2 + n− bE[K]c) = O(n2)

where E[K] =
n+1∑

k=1

k
n!(k − 1)

nk · (n− k + 1)!

The one counter approach seems to be generally accepted as “the answer”, according to word
of mouth and the solution pages of some puzzle web sites. The dynamic counter assignment
modification is not as well known.

3 Recursive Multiple Counter Method

Discussions in the forum of the author’s puzzle web site2 have produced multiple counter al-
gorithms which beat the one counter algorithm substantially. Intuitively, one might perceive
that a one counter approach is suboptimal, since only one prisoner is exercising his counting
and memorization abilities, although all prisoners have these abilities. A better algorithm
uses multiple counters who merge their readings over time. In computer simulations using
a multiple counter approach with 100 prisoners, the average running time was reduced by
over 60%.

2[ wu :: riddles ] at http://www.ocf.berkeley.edu/∼wwu/riddles. Perhaps responsible for popularizing
the 100 Prisoners puzzle after the site was recognized by slashdot.org. Most online incarnations of the riddle
use the author’s phrasing.

5



3.1 Predefined Roles

This algorithm is parameterized by 4 variables, each to be explained below: Cp, Cs, Ns, and
an finite array S[ ] of integers which correspond to stage lengths. Varying these parameters
will result in different average performance.

0. Meeting: Know Your Role

• Outline: Each prisoner sticks to one of three possible roles during the algorithm’s
execution: Primary Counter, Secondary Counter, and Drone. In Stage 1 of the al-
gorithm, the Primary Counter will be responsible for counting at most Cp Drones,
and the Secondary Counter will be responsible for counting at most Cs drones. In
Stage 2, the Primary Counter will count how many Secondary Counters succeeded
in Stage 1, and increment his own count accordingly. Stages 1 and 2 are then
repeated until the Primary Counter’s count reaches 100, upon which the assertion
is made.

• At the meeting, define who is who. There can be only one Primary Counter. Let
the number of secondary counters be denoted by Ns. Everyone else is a Drone.

• Primary Counter, and all Secondary Counters, are initialized to 1.

1. Stage 1: Counting Drones; lasts for S[1] days

• Days 1 through S[1] - 1:

(a) Bulb Is Turned On: If a Drone enters the room and has never turned the
bulb on before, he turns it on. (The bulb has to be in its off position for the
Drone to do this.)

(b) Bulb Is Turned Off: If a Counter sees an on bulb and has not already exceeded
his maximal Stage 1 count (Cs for Secondary Counter, Cp for Primary), then
he increments his Stage 1 count and turns off the bulb. Else, do nothing.

• Day S[1] (the last day of Stage 1): Whoever visits the living room should turn
the bulb off before he leaves, unless he is a Secondary Counter who counted up
to Cs.

2. Stage 2: Merging Counts; lasts for S[2] days

To ease exposition, let us denote those Secondary Counters who managed to count
up to Cs as being “completed”, since they have completed their task. Recall that the
goals of Stage 2 are to tell the Primary Counter how many Secondary Counters are
completed, and possibly escape the prison.

• Days 1 through S[1] - 1:

(a) Bulb Is Turned On: If a completed Secondary Counter has never turned the
bulb on before. However, if the visitor on the last day of Stage 1 was a
completed Secondary Counter, he does not turn the bulb on again during
Stage 2.

6



(b) Bulb Is Turned Off: If the Primary Counter sees an on bulb, he increments
his master count by Cs, and turns off the bulb.* If the master count reaches
100, he asserts that all prisoners have been in the living room, and the game
is over.

*This is key. A multiple counter approach allows the master count to be incre-
mented in chunks larger than one unit. However, the larger the chunk, the less
likely a Secondary Counter is to be completed in Stage 1. Thus there are tradeoffs
in choosing parameters.

• Day S[2] (the last day of Stage 2): Whoever visits turns off the bulb. Repeat
Stages 1 and 2 until everyone is freed. Anyone who has turned on the bulb in the
past does nothing for the rest of his time in prison. Finally, the lengths of Stages
1 and 2 can be varied according to the array S[ ]. That is, while Stage 1 may
have lasted for 2000 days in the algorithm’s first iteration, it may be 1500 in the
second iteration, and so on.

Finding closed-form expressions for the expectation and variance of this algorithm’s running
time may be difficult, and will be deferred by the author until winter break. This will be
necessary to optimize parameter choices, probably using multivariable calculus.

In the meantime, computer simulations are easy to implement. Trial and error has produced
expectations in the 3300-3800 day range.

3.2 Binary Stages and Dynamic Role Assignment

Alex Harris suggests an alternative approach which the author does not fully understand yet,
given current schoolwork time constraints. Harris’s approach does not improve the running
time substantially according to simulations, but it is more elegant. Apparently if everything
is done with binary numbers, roles do not have to be defined a priori. Everyone can begin
as an “active” prisoner. If an active prisoner enters the room, they toggle the light switch.
If the toggle turns the bulb off, the active prisoner calls himself a Counter, and stays active
in the next stage. If the toggle turns the bulb on, he calls himself a Drone and becomes
inactive from that point on. Of course, both active and inactive prisoners must turn off the
bulb and account for it next time if the bulb is on at the end of the stage.

Harris’s analysis is reprinted below, adapted from an online forum post. Some probability
facts he uses:

• Variance (or mean) of the sum of independent random variables is the sum of the
variances (or means).

• A geometric random variable with probability p has mean 1
p

and variance (1−p)
p2 .

• Sum of harmonic series H(n) ∼ ln n.

7



• H2(n) =
∑∞

i=0
1
i2
→ π2/6.

• For p in [0,1]: (1-p)n ≥ 1 - np

• Less than 1/k2 of a distribution can be > mean + k * (deviation) ln and log2 are off
by a constant factor, so Harris will not distinguish between them.

∗ ∗ ∗

In stage i we start with a = n / 2i active prisoners (prisoners with stageBit = 1) — I only
really need that a ≤ n which is obvious. Every time an active prisoner is selected by the
warden, he flips his bit and becomes inactive for the rest of the phase. Each reduction in the
number of active prisoners is an independent geometric distribution with p=(a/n) where a
is the current number of active prisoners.Observe that the sum of means is nH(a) and the
sum of variances is < H2(a) * n2, so these are the mean/variance of success of the stage as a
whole. Lets say we want at least a 1- 1

2
log n chance of success for the stage. We can ensure

this by waiting (mean) +
√

2logn * deviation < n log n +
√

(2logn) * n * π√
6
. This is O(n

log n). If we have log n stages, then the odds that all will succeed are at least (1-1/(2log
n))logn > 1 - (log n)/(2log n) = 1 - 1/2 = .5 and the total time needed is O(n (log n)2).
Since each pass through all the stages wins with p>.5, we average < 2 passes and the total
expected time for success is O(n (log n)2).

Here is the code snippet from my working test model. There is a little extra complexity on
stage ending days, but overall its very simple. On 100 prisoners it takes about 4500 with
my arbitrarily chosen stage length parameters. On 256 it takes 14800 or so on average and
on 4 it takes about 20. Better parameters might improve those times by a bit (probably not
more than 10 percent or so). In practice, the number of days is c(n) n (ln n)2 where c(4)<3
and drops as you increase problem size with c(128)<2. I think c drops to something like 1.5
asymptotically with current parameters.

bool prisonerToRoom(int prisoner, bool lightOn){

currentDay++;

if (currentDay == stageCutoffs[currentStage]){

if (lightOn) { // prisoner must absorb unreceived message

myCounter[prisoner] += stageBit;

}

stageCompleted(); // stageBit changes here

// commence the next stage

if (myCounter[prisoner] & stageBit){

myCounter[prisoner] -= stageBit;

8



return true;

}

else

return false;

}

else if (myCounter[prisoner] & stageBit){

if (lightOn){

myCounter[prisoner] += stageBit;

return false;

}

else {

myCounter[prisoner] -= stageBit;

return true;

}

}

else

return lightOn;

}

4 Next Steps

The author hopes to optimize algebraic expressions for the expectations and variances of the
parameterized multiple counter algorithms. Then he will explore a few completely different
approaches to solving the puzzle.

An example of a different approach is based on token exchange. Each person starts with one
token (conceptually speaking), and we establish

• rules, by which people can transfer some or all of their tokens to each other, and

• a policy, such that the tokens tend to accumulate in fewer hands.

Inherent in the rules will be the fact that a person can only transfer tokens by being in the
room, so as soon as anyone gets 100 tokens, the prisoners are free.

The author is also interested in scenarios with multiple light bulbs and a parameterized risk
tolerance. Such conditions should make the puzzle more applicable to real world situations,
where there are multiple agents working toward a common goal, each randomly taking turns
sharing more than one bit of memory, and all willing to accept less than a 100% probability
of success.

9



5 Credits

Several people contributed good ideas for solving this puzzle via the author’s web forum.
Only their online avatars are known to the author, but their real names will certainly be
collected if this semblance of a paper is to be published someday. Important players include
Alex Harris and Paul Hammond, all of whom the author would forward this paper to for
review. David Lau is also thanked for first introducing the author to this puzzle.

10


